GEOS 3101-3801

Practical 3 - Tectonic forces

1 Slab pull and viscosity of the asthenosphere

The aim of this exercise is to estimate the force balance that applies to a subducting ocean plate, with the aim to estimate the viscosity of the mantle. We consider a plate of thickness t subducting with a velocity u_0 . The plate has sunk to a depth d in the mantle (Fig. 1) and the extent of the plate parallel to the trench is l.

FIG. 1 – Schematic vertical cross-section through a simplified subduction zone.

- 1. Give values of t, d, l and u_0 based on your knowledge of the Earth.
- 2. Draw arrows on Fig. 1 to indicate the buoyancy force \vec{B} that applies to the subducting plate and the friction force \vec{F} between the subducting plate and the surrounding mantle. This friction force is the cause of most earthquakes at subduction zones.
- 3. Express the buoyancy of the subducting plate $\underline{per\ unit\ length}$ as a function of the density difference between the mantle and the oceanic lithosphere $\Delta \rho$. Propose a value of $||\vec{B}||$ for $\Delta \rho = 60\ \text{kg}\ \text{m}^{-3}$.
- 4. The total friction force parallel to the trench is

$$\left| \left| \vec{F_T} \right| \right| = 2 \; \mu \; u_0 \; l \; ,$$

where μ is the viscosity of the mantle and u_0 is the average velocity of subducting plates.

Give the unit of μ in the international system (1 Pa = 1 N m⁻²).

5. Give an expression for μ assuming equilibrium between the forces acting on the subducting plate *per unit length*. The friction force *per unit length* is

$$\left| \left| \vec{F} \right| \right| = \frac{\left| \left| \vec{F_T} \right| \right|}{l}$$
.

Does this force balance correspond to weak or to strong coupling between the mantle and the subducting plate? Propose a value of μ . Is this value a lower or a greater bound for μ ?

2 Ridge push calculated in the half-space cooling model

The aim of this problem is to combine notions of heat diffusion and isostasy in order to estimate the depth of the ocean and the ridge-push as a function of the age of the ocean floor.

FIG. 2 – Bathymetry of the ocean floor due to the cooling of the lithosphere (not to scale).

- 1. Write the literal expression of isostatic equilibrium between the mid-oceanic ridge and the oceanic plate at a distance l from the ridge at the compensation depth d, using densities, the lithospheric thickness Z_L and the water depth w.
- 2. Re-write the expression you obtained in 1 using $(\rho_m-\rho_L)\,Z_L=\int_0^{Z_L}\left(\rho_m-\rho_L\right)dz$.
- 3. The change in density of the oceanic lithosphere with temperature is given by

$$\Delta \rho = -\rho_m \,\alpha \,\Delta T,\tag{1}$$

where $\Delta \rho = \rho_m - \rho_L$, $\Delta T = T_m - T_L$, α is the thermal expansion and ρ_m is the reference density.

Considering cooling in one direction extending to infinity ("half-space cooling model"), the temperature profile of the oceanic lithosphere can be written as

$$\frac{T_m - T_L}{T_m} = \operatorname{erfc}\left(\frac{z}{2\sqrt{\kappa x/u_0}}\right),\tag{2}$$

where erfc is the complementary error function, κ is the thermal diffusivity of the lithosphere and u_0 is the spreading rate of the oceanic plate.

- Combine equations 1 and 2 to express the density difference between the oceanic lithosphere and the mantle.
- Use this result in the expression you wrote in question 2.
- 4. One of the properties of the complementary error function is that

$$\int_0^\infty \operatorname{erfc}\left(\frac{z}{2\sqrt{\kappa x/u_0}}\right) dz = 2\sqrt{\frac{\kappa x}{\pi u_0}} \,. \tag{3}$$

In the half-space cooling model, because $\rho \to \rho_m$ and $T \to T_m$ at the base of the lithosphere, the upper limit of the integral can be changed from ∞ to Z_L , so that

$$\int_0^{Z_L} \operatorname{erfc}\left(\frac{z}{2\sqrt{\kappa x/u_0}}\right) dz = 2\sqrt{\frac{\kappa x}{\pi u_0}}.$$
 (4)

- Use the given property of the complementary error function (Eq. 4) to express the water depth w as a function of the age of the ocean floor from the expression you wrote in question 3.
- Use the values given in Table 1 to calculate the depth of ocean floor 80 million years old.
- 5. Using the concept of gravitational potential energy, express the norm of the force $||\vec{F}||$ resulting from forces $\vec{F_1}$ and $\vec{F_2}$ between the mid-oceanic ridge and the oceanic plate at a distance l from the ridge, down to depth w.

6. Calculate the norm of the force $||\vec{F}||$ for ocean floor 80 million years old. You will need to use the water depth that you calculated in question 4.

7. Advanced students:

The full expression of the ridge-push is given by

$$\left\| \vec{F_R} \right\| = \left\| \vec{F} \right\| + g\rho_m \alpha (T_m - T_0) \kappa t, \tag{5}$$

where t is the age of the ocean floor.

Calculate the ridge-push for ocean floor 100 million years old using the values given in Table 1.

Compare your result to the one you obtained for question 3 of the previous exercise, and comment.

TAB. 1 – Values of the parameters used in the problem.

Title. I values of the parameters used in the problem.			
Parameter	Meaning	Value	Unit (model)
T_m	temperature of the upper mantle	1330	°C
T_0	temperature of the deep ocean	0	$^{\circ}\mathrm{C}$
g	acceleration of the gravity field	9.81	${\rm m~s^{-2}}$
α	thermal expansion	3×10^{-5}	K^{-1}
κ	thermal diffusivity	1×10^{-6}	${ m m}^2 { m s}^{-1}$
$ ho_m$	density of the mantle	3340	${ m kg~m^{-3}}$
$ ho_w$	density of the ocean water	1030	${\rm kg}~{\rm m}^{-3}$